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A system of equations of a viscous heat-conducting perfect gas [l, 21 isstudied 
for the case of a one-dimensional motion with plane waves. Unique solvability 
of the problem of gas flow in a bounded region with impermeable thermallyin- 

sulated boundaries is proved in the classes of the generalized (strong) and clas- 

sical solutions, The theorem of existence is established by the method of con- 
tinuing the local solution with respect to time, based on the a priori global 
estimates. A major role is played here by the upper and lower bounds for the 
density and temperature. A method of obtaining these bounds was worked out 
in [3] for a simpler problem of gas expanding into vacuum. The problem of 
existence of global solutions of one-dimensional nonstationary equations of a 
viscous compressible gas was dealt with in [4-61 only for the simplest models. 

1. Formulation of the problem, The syrtem of equations of a viscous gas 
can be written in the Lagrange variables in the following form (see [Z], ch. 2): 

(1.1) 

Here the unknown functions u, V, p, E and T are, respectively, the velocity,spe- 
cific volume, pressure, internal energy and absolute temperature ; p and x are the vis- 
cosity and heat conductivity coefficients, -c is time and g denotes the Lagrangianmass 

coordinate. The system is closed by two equations of state which for a polytropic perfect 

gas can be written in the form 
pV = RT, E = cv T, 

where R > 0 is the gas constant and cv is heat capacity at constant volume. We as- 

sume that p, x and cv are positive constants and, that the region occupied by the gas 
is bounded : 0 < q < q1 < 00. The distribution of u, V and T is assumed known 

at the initial instant T = 0 ; the boundaries Q = 0 and q = q1 are, by definition, 

impermeable and thermally insulated 

u = uo (q), V = Vo Cd, T = To (4 for T = 0, O<q< 4s (1.2) 
u = 0, dT/dq = 0 for q=O, q=Ql 

In addition, V, (9) and To (q) are positive and bounded functions. Let US introduce 

the dimensionless variables 
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Then the domain of variation of x reduces to the unit segment 5 = [O, 11 and the 

system of equations assumes the form 

(1.3) 

Here the third equation represents the difference between the third equation of (1.1) and 
the second equation multiplied by u The boundary and initial conditions are written in 

the form 
u = awax = 0 for x=0, x==l (1.4) 

22 = uo (x)7 p = PO (a$ 0 = 00 (t) for t = 0, x E Q (1. 5, 

and the functions p. (z) and 8, (x) are strictly positive and bounded 

m = miri { i;f p. (.I:), i;f O. (.r)} > 0 (1.6) 

In addition, in the dimensionless variables the initial density p. (x) has the property 

(1.7) 

Multiplying the second equation of (1.3) by u (z, t) and adding it to the third equation, 

we obtain dli~ -=- 
at 

;z jp~~~--(h--l)~ (1.8) 

(10 (z, t) = 8 (z, t) + li2~n (z, t)) 

The aim of this paper is to prove the solvability of the system (1.3)-(1.5) in the rec- 

tangle Q = Q x (0, h) of arbitrary finite height h, 0 < h < 00. 

Let us now establish the meaning of the solution of the problem. We .denote by 11 . I( 
the norm in L2 (Q) and for the remaining spaces the symbol denoting the norm will 
be accompanied by the relevant index. At times the functions of two variables will be 
treated as functions of the argument t with the values belonging to aBanach space. The 
constants depending only on the initial values (1.5) of the parameters h, h, k, m, iv 

and on the constants of the inclusion theorems, will be denoted by N with appropriate 

indices. 
Definition. We shall call the set of functions (p, U, 8) 

P (t) E Lc (0, h; Wal (Q)), -$ (t) E Lx (0, h; La (9)) 

(u (4, e 0)) E L, (0, hi w,l (sz)) n L, (0, h; w,2 (52)) n 

f-l J+‘,’ (0, h; L, (Q)) 
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a generalized solution of the problem (1.3) -( 1.5). The functions satisfy the equations 
of the system almost everywhere in Q = Q x (0, h) , and assume the prescribed ini- 

tial and boundary values in the sense of the traces of the functions belonging to the above 

classes. 

2. Baric theorem: and the rcheme of their proof, 
Theorem 1. Let the initial values satisfy the conditions (1.6), (1.7) and 

(po (Z), ug (Z), 8, (Z)) E WZi (Q), uo (0) = no (1) = o 

Then a unique generatized solution of the problem (1.3)- (1.5) exists, the functions 

F (G t) and 0 (x, t) are strictly positive and bounded. 

Theorem 2. If in addition to the requirements of Theorem 1 the conditions 

(&J, 0,) E c*+a (Q), p. E C”” (Q), 0 < a < 1 

also hold and the initial values are consistent with the boundary values 

UO = 0,' = 0, (~0~0')' - k (~000)' = 0 for x = 0, x=1 

then the solution of the problem is classical 

(V (X, t), I3 (Z, t)) E C*+a,‘+a’* (Q), p (Z, t) E Ci+a.l+=Q (Q) 

Proof of the theorems is based on the use of a p r i o r i estimates the constants in 

which depend only on the data of the problem and on the height h of the rectangle Q. 
The estimates make it possible to continue the local solution the existence of whichcan 

be proved using the principle of compressed mappings, to the whole interval IO, hl . 
Without going into the proof of the local solvability of the problem, we shall show that 
the operator equation equivalent to the problem is constructed by linearization of Eq. 

(1.3). Since the operator obtained is contractive on a small time interval, we can apply 
the Banach theorem. 

The first (energetic) estimate can be obtained by integrating Eq. (1.8) in Q , with the 
conditions (1.4) taken into account 

1 1 

$ s w (x, t) dx = 6 SF 8 (x7 t) + f u* (x, t)] dx E 0 (2.1) 
This yields 0 0 

II e 0) IL‘ (0) + +- 0 u w 112 = II e. IlLI (n) + + II u. IP = NO < 00 (2.2) 

The above equation is valid as long as 8 (x, t) > 0. Therefore in the next stage we 
verify the positiveness of the temperature obtaining, at the same time, the upper bound 
for the density. Next we prove the strict positiveness of the density. In deriving these 
estimates we use a number ofauxilliary lemmas which will be formulated in Sect. 3. In 
the final partweprove theestimates for the derivatives of the functions in question, and 

study the differential properries of the solutions. 

3. Auxiliary a88umptions. First we note two simple properties of the density 

P (x, t). 
Lemma 1. If p (z, t) is a function positive and continuous in Q , then the follow- 

ing equation holds for every t E 10, h.] : 1 

s p-’ (T, t) dr = 1 (3.1) 
0 
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and at least one point a = u (t) E IO, 11 exists such that 

P (a (0, t) = 1, Vt E IO, Ii1 (3.2) 

Proof. Let us write the first equation of (1.3) in the form (p-lb = vX and integrate 

it over Q. Taking into account the conditions (1.4) and the property (1.7) of the func- 

tion pa-1 (x) we obtain, as the result, the formula (3.1). According to our assumption, 

the function p (z. t) is continuous, therefore the second assertion of the lemma obvious- 

ly follows from (3.1). 
Let us derive yet another corollary of the system (1.3). We eliminate the quantity 

pan’ / & == --B In p / at from the second equation of (1.3) and integrate the resulting 

expression with respect to t 
t 

b (xc, a = kP (5, tP (2, t)) 

Performing the second integration at fixed t from the point a (t) where P (a (t), t) = 1 
to an arbitrary x E [0, 11, and taking antilogs, we obtain 

t 

P(X, Qexp 
0 

PI”,“)dr 
1 

=~o(r)Y(t)B(x, t) (3.4) 
0 

t 

Ylt) = ~;‘(a (t)) exp 
I 
1 p (a (t), z) dz 
0 

(3.5) 

(3.6) 

Let us now multiply both sides of the formula (3.4) by k6 (z, t) and use the definition 

of the function p t2, t) as given within the brackets in (3.3). Integrating from 0 to any 

value of t, we obtain t 

exp P(x,t)d~ = ~+k~~,P)~(~,tj 

I(x,t) =~l’(~)B(x,~)B(z,~)d~ 

0 
Consequently, the formula (3.4) assumes the form 

p (5, t) = Y (t)B (2, t) [po-’ (4 + k I (2, t)l-’ (3.7) 

It can be shown that the functions Y (t) and B (CZ, t) appearing in the above expression 
are strictly positive and bounded. 

Lemma 2. The following uniform estimates hold under the conditions of Theo- 
rem 1: 

0 < N,-’ < B (2, t) < N, < 00, IV,-’ < Y (t) < Na < 00 (3.3) 

Proof, Applying the Holder inequality, we obtain from (2.2) 

1 [ v (4, t) dE 1 Q II v (t) IIL,(fij d 11 v (t) iI< @No)“’ 9 V(r, t)= G 

ait) 
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Therefore the first relation of (3.8) holds with the constant 

N1 = exy, (11 o. [IL,(~) + (2~~0)“~) 

In proving the estimates for the function Y (t) , we can write (3.7) in the following 

form : 
Y (t)p-’ b, t) =z B-’ (2, t) [PO-’ (4 + kI b:, 41 

and integrate it over P, taking Eq, (3.1) into account. Using the estimates for B (2, t) 

and the property (1.7) of the initial density p,, (x), we arrive at the inequalities 

and the proof of the estimates (3.8) is completed by applying the Gronwall lemma. 
The formulas (3. ‘7) and (3,8) make it possible to establish important relations con- 

necting the density with the temperature, Let us introduce the following abbreviated 
notation for the maximum and minimum values of p (z, t) and 8 (z, 1) at the cross 

sections t=const : 
772, (t) =@Fj:,p (z, t), %I 0) = zp<lQ (3, cl (3-3) 

Mp (t) =;n&p (5, Ql 
. . 

Me (0 = n&Q (XT t) 

Lemma 3. For the above qunatities we have the following relations: 

~1, (t) < N [I + n 5 mr (“6) dry1 (3.10) 
0 

Proof of these inequalities follows from the formula (3.7), provided that the estimates 

(3.8) for B (z, t) and Y (t) are taken into account. 

Lemma 4. The following inequality holds for any q > 0 : 

iwe* (t) < qJ, (t) -t- C,J, (t) + K, (3.12) 

am = tpi’, t,[$(.r, t)]2d.r, Jz(t) = ~J,(W 
0 0 

with constants C, and &depending on the values of h and ?j of the problem. 

Proof , The following relations hold : 
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We estimate the integral in the right-hand side with the help of the Cauchy inequality, 
taking the first cofactor with the weight p-l” (E, L) 

Since 

$‘5 x 05, p-1 (4, 1) < WI;’ (11, \ I$ (4, 1) I dS d 2:+‘,, 
0” 

we find that 

, $ (z t) (“2 < ‘3 _s. IT2 7 \c ( ) 2 Inpl’z (t) Jp (t) 

Let us raise both sides io the power 4/3 and strengthen the inequality using the formula 
(3.11) for pnP (t). This gives us 

MO2 (t) < ,I’, + .Y, 
( ‘4 

1 + .1 ’ M, (T) dr “* J’,‘“(t) 

ti ) 

Next we apply the Young and H6lder inequalities to the second term in the right-hand 
side t 

h’,z(t) < qJ, (0 + !t’,q-2 \ 111,~(7) dr + .y, (3.13) 
b 

from which, according to the Gronwall lemma, follows (3.12). 

4, Upper and lower bound8 for the dcnlity and temperature. 
Lemma 5. A constant m, > 0 exists such that 

mo (t) > 4,. Vt E IO, hl (!.l) 

Proof. We add and subtrdct ‘irk2p02 to and from the right-hand side of the last equd- 
tion of (1.3) and divide both pJrts by 42, to obtdin 

ao 
at 

-.: h.~(p~)_-r2hp0(~)l+P’““(~-~e)2]+ $P, ore-’ 

Let us multiply this equation by .%x#‘-*, where r is an arbitrary natural number, and 

integrate over Q. Taking into accunt the fact that the expression in the squarebrackets 

is nonnegative, we obtain the inequality 

Let us apply the Hiilder inequality to the right- hand side,reduce the result by (1 o (t) 11 i&ln, 
and integrate from 0 to an arbitrary f. At the limit as r - 00 we obtain, in terms of 

the notation (3.9), the relation 
I 

k2 
I+ (t) < m-l + 4 

s 
M, (r) dr 

0 
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We reinforce it with the help of the inequality (3.10) for ,Vp (T) 

rnil (f) < y (t), y(t) = m-1 + ~~[l+n~m,(~jdr]-ldr 
0 0 

Integrating this inequality with respect to y (t) we arrive at the estimate (4.1). The lat- 

ter implies that from (3.10) follows the boundedness of the density 

M, (t) < AV, Vt E 10, hl (4.2) 

Lemma 6. A constant n, > 0 exists such that 

?a 0) > no7 Vt E lo, hl (4.3) 

We shall begin the proof by verifying the boundedness of the integral J, (1). Then Lem- 
ma 4 will imply the summability on [O, h] of the function M, (f), and the strict positi- 
veness of nzp (t) will then follow from the inequality (3.11). 

Let us now turn our attention to (1.8). Multiplying it by w (2, t) and integrating over 
Q , we obtain 

+&t)llz +\ pwX2dz + (It - 1) \ pOxw,dz = (4.4) 

0 0 

1 1 1 

k pOrwxdx<6 pwxvx+$- P02v2dx 
s s s 
0 0 0 

where 6 > 0 is arbitrary. By definition, the functions w (i - 6)~,2 + (A - 1)@,w, 2 

(A - 28)tl xa - [‘/,8-1 (1 + 1L)2 4 26 - It - 2]02u x2, therefore choosing d = I/s min (1, 
k) we can strengthen the inequality (4.4) 

(4.5) 

1 . 
F (t) = p&Wdz, s c (t) = 5 pub2 dx 

0 0 

Multiplying the second equation of (1.3) by d (I, 1) and integrating by parts over Q 
yields, with the help of the Cauchy inequality, 

+ $1 v (t) Il&nj + 3G (t) = 35 p8Gvxdx < + C (t) + + F (t) (4.6) 
0 

Combining the inequalities (4.,5) and (4.6). we obtain 

~~Ow(t)l13+yA~(t)Il~,~~~)+~J,(t)fNS(f) 

(v = ‘I&‘,, No = Ns f N,) 

The right-hand side of the above formula does not exceed 2,V,NN&,,s (f), since p (x, 
f) < N and 1 v (t) 11 * < 2N,. The estimate (3.12) in turn holds for M,,*,consequently 

6 (1 w (ti II2 + Y U v v) u&cn,) + ‘i -J,(t) d 2N,NN, [WI(t) + C,.rp (t) + KJ (4.7) 

We choose 9 > 0 so that 4K’,NNsq - )\. . Then, for the positive function 



280 A. V. Kazhikhov and V. V. Shelukhin 

z (4 = II w (t) II 2 + Y II u(t) II &*, + AJa (4 

the relation (4.7) yields the following differential inequality : 

dz 
bt d N9l + ‘VI,, 

From this we conclude that z (t) is a function bounded on 10, h] , i.e. 

J, (t) < N,,, V t E 10, 4 (4.8) 

II u tt) II’ + Y II c (t) Q,,(Q) < lY,L (4.9) 

By virtue of the inequality (3.12),(4.8) implies the summability of the function &f,a (t) 
in [0, h] , and even more strongly, that of V, (t) 

h 11 

s 
‘&Ia(t)dt< ““[\ ’ Mo” (t) d,)“’ < Y,, (‘1. 10) 

0 0 

After this, the formula (3.11) yields the following lower bound for mp (t) 

mp (4 > n 11 4 NN,,l-’ = 110 > 0, v t E [O, h] 

which completes the proof of Lemma 6. 
We note two of its properties. Firstly, in accordance with the definition of u (x, t) we 

have from (4.9) 
(4.11) 

Secondly, the inequality (4.3) together with (4.8) yields the estimate 

(4.12) 

5. EItimate for the derivative8 of the unknown functions. Using 
the inequalities obtained above, we shall prove the remaining a p r i or i estimates in- 

dicated in Theorems 1 and 2. At this stage we shall follow a scheme given in [3, 61 and 

show only the corresponding necessary changes in the method illustrating the derivation 
of the estimates with examples. 

Multiplying the second equation of (1.3) by u (2, t), and integrating over Q ,we find 
Ir 

s * II vx (t) II2 dt < /VI, (5.1) 
0 

Further, differentiating (3.7) with respect to T, we obtain 

From this we obtain, using the estimates (2.2), (3.8) and (4.X))- (4.12), 

(5.2) 

(5.3) 
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Next we multiply the second equation of (1.3) by uXT and integrate over 8. The in- 
equalities (4.2), (4.3), (4. II) and (5.3) together yield the estimate 

ft 

Now from (1,3) we obtain directly 

Similarly, multiplying the third equation of (1.3) by eSx, we deduce 

(5*4) 

~fferent~ating the first equation of (1.3) with respect to x and taking (5.4) into account, 
we also obtain h 

s 
IIP,~(t)l12~tC&2 (5.7) 

0 

This concludes the proof of the estimates appearing in Theorem 1. We note that the 
inequalities (5,3), (5.5) and (5.7) guarantee, by virtue of the embedding theorem the 
Holder continuity of the density p (x, t) with the index rj,. 

Passing now to the estimates of Theorem 2, we shall first show that v (a, t) and B (z,.t) 
are also Holder continuous. To do this we differentiate the second and third equationof 

(1.3) with respect to t , and we multiply the results by ut and e1 I respectively. Using 
the previously obtained inequalities, we arrive at the estimates 

h 

The above estimates together with (5.4) and (5.6) imply, by virtue of the embedd~g 
theorem, the Holder continuity in 0 of the functions LJ (5, t) and 8 (2, t) with the in- 

dex Va . Further, from the formula (5.2) follows the Holder continuity in Q of the de- 
rivative ap / dx . In fact, the first term in the right-hand side of (5.2) is Holder conti- 
nuous by virtue of the properties of p, so and Y. The cofactor p (CC, t)B-a (2, t)Y-l (8) 
has this property in accordance with (3. ‘I), Finally.yr the integral 

is also tilder continuous in g by virtue of the estimates (5.6). 
Having proved the Holder continuity of the density p (CC, t) and of its derivative with 

respect to x, we can consider the second and third equations of (1.3) as a system para- 
bolic in Y (2, t) and 8 (r, t) , with Holder coefficients and with right-hand side. Using 
the estimates of solutions of the parabolic equations in the classes of Holder functions, 
we raise the smoothness of the solution to that indicated in Theorem 2, 

N 5 t e . In the same manner we can show the solvability of a problem with the bound- 
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ary conditions of the form 

v=e=O for x=0,2=1 

We assume here that the initial temperature 0, (x) is nonnegative. Then considering 
the third equation of (1.3) as linearly parabolic in 8 (2, t), we conclude with the help 

of the maximum principle that 8 (5, t) > 0 in & This property of the temperature en- 
ables us to use the inequalities (3.10) and (4.2) in the process of obtaining the upper 

bound for the density. 
We must introduce yet another change into the derivation of the first (energetic) esti- 

mate. Let us multiply the second equation of (1.3) by v and the third equation by 

8 (62 + 6)-1/2, where 8 > 0 is an arbitrary number. Adding and integrating, we obtain 

1 

-& i[ ~0” [I - 0 (e2 + 8)-l’] dx 
0 

Integrating now with respect to t and making 6 tend to zero, we arrive at the required 

estimate 
ile (1) tkichaj + --: 11 0 w 112 G x, = II 0, h,,cs2j t +- II v. 112 

The remaining arguments appearing in the problem with specified values of the tem- 
perature at the boundaries are the same as those considered in the problem with agiven 

heat flux which has been studied in detail. 
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